GO Challenge 2:
Electric Stampede’s Approach

Kyri Baker, Constance Crozier, and Javad Mohammadi

11‘)

University of Colorado TEXAS GR|D OPT|M|ZAT|ON (GO)

Boulder The Un at Austin

Core Approach

e Focus on speed for finding a feasible solution
e No parallelization of the preventative problem
o Exploited multiple nodes for resiliency
e Selective simplifications of the problem formulation

e No integer rounding: MIP + NLP

Computational details

e Code was written in Python

o Added some overhead but sped up development
e \We coupled two optimization problems:

o Mixed integer linear program (CPLEX)

o Continuous non-linear problem (IPOPT - cyipopt)

e Data read-in using functions provided in competition

An Overview of our Method - Preventative SCOPF

Objective: |
linearised aostrnctions | - 90 Xako, o
binary switching costs ®iko

Network
parameters Constraints:

DC power flow equations

o : Pgk, Xgk, ik
Gen switching constraints

Oik

Mixed-integer Linear Program
CPLEX

An Overview of our Method - Preventative SCOPF

Objective: . | Objective:
. . : Pgko, Xgko, tjko :
Linearised cost functions + J il Quadratic generator costs, full
binary switching costs Qiko formulation for loads
Network _ Base case
parameters ConStraintS: Constraints: Solution
DC power flow equations Pgk, Xgk, tik AC power flow equations
Gen switching constraints ’ ’ Reverse ramping constraints
from contingencies
Mixed-integer Linear Program Continuous Non-linear Program

CPLEX IPOPT

4

Inputs to the
corrective solution

An Overview of our Method - Corrective SCOPF

Base case Objective:
solution Quadratic generator costs, full
formulation for loads _
Pgk, Xgk, tjk Contlngency
Constraints: solution

AC power flow equations
Ramping constraints

Continuous Non-linear Program
IPOPT

Simplification: Generator cost functions

e Quadratic approximation to generator costs

Marginal cost
Total cost

Total cost

Pg Pg

Simplification: Taps and Shunts

e Removed controllable shunts and transformer taps from the AC formulation

e Use of continuous variable relaxation sometimes back-fired

Score w/ varied taps | Score w/ fixed taps
and shunts and shunts

65,091,360 65,333,260

Simplification: Removed line switching

Line Line Line Line
1@ 3 . 8 8
0 7 : 9 ° I O g
3|29 1 4 0 o :
N 3 11 6 12 p &
2 Yy ——————— 6 / 13 9 J
= 8 B 24 =
) - o
) e P T %% 12 5763 25I 9 2
1 13 % 28 / 10 3
6798 > 3
6 40 85 27
Line Iteration 1 Line Iteration 2 Iteration 3 Iteration 4
19 19
_|
@
0 01 3
20 1 20 = .
% 3 (from an upcoming paper on
& 3 it m reducing the complexity of DC-OTS)
S|s 5
A 65 =
© (@)
2 b2 o8 .8..
6804 . @
8 o
¢ T 5 8

Iteration 1 Iteration 2

Computational Speed Improvements
_ _ _ class problem(object):
Derived analytic formulation of the
. . def objective(self, x):
Jacobian and Hessian # The callback for calculating the objective

def gradient(self, x):
The callback for calculating the gradient

Calculated in vectorized form def constraints(self, x):
The callback for calculating the constraints

def jacobian(self, x):
The callback for calculating the Jacobian

def hessian(self, x, lagrange, obj_factor):
The callback for calculating the Hessian

10

Computational Speed Improvements: Slack Variables

Try running AC code without slack variables first

AC code

) Find closest point to
No
(no slack variables) Converged? AC solution

Time Limit: 75%

Questions?

